
Factorial ANOVA
Testing more than one manipulation



Factorial ANOVA

Today’s goal: 
Teach you about factorial ANOVA, the test used to 
evaluate more than two manipulations at the same time 

Outline: 

- Why Factorial ANOVA? 

- Factorial ANOVA in R 

- Different types of sums of squares 

- Contrasts and simple effects



Why factorial ANOVA?
the idea of interaction effects



Factorial ANOVA

Two manipulations at the 
same time: 

What is the combined 
effect of list diversity and 
list length on perceived 
recommendation quality? 

Test for the interaction 
effect!
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Factorial ANOVA
Interaction effect: 

“5-item lists have a higher 
perceived quality than 10- 
or 20-item lists, but only 
when diversification is 
high” 
“High diversification lists 
have a higher perceived 
quality, but only for 5-item 
lists”
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Explanation
Example: effect of font size (small, large) and background 
color (blue, white) on readability (0-100) 

If there is no interaction effect, we consider a regression 
model like this: 

Yi = a + b1X1i + b2X2i + ei 

Font size: X1 = 1 for large, X1 = 0 for small 
Background color: X2 = 1 for white, X2 = 0 for blue 
b1: difference between small and large (for any color) 
b2: difference between blue and white (for any size)



Explanation

Let’s say a = 30, b1 = 10, and b2 = 25 
Yi = 30 + 10*X1i + 25*X2i + ei 

Small, blue: readability = 30+10*0+25*0 = 30 
Large, blue: readability = 30+10*1+25*0 = 40 
Small, white: readability = 30+10*0+25*1 = 55 
Large, white: readability = 30+10*1+25*1 = 65
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Explanation

Let’s say a = 30, b1 = 10, and b2 = 25 
Yi = 30 + 10*X1i + 25*X2i + ei 

Small, blue: readability = 30+10*0+25*0 = 30 
Large, blue: readability = 30+10*1+25*0 = 40 
Small, white: readability = 30+10*0+25*1 = 55 
Large, white: readability = 30+10*1+25*1 = 65
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Explanation
If there is an interaction effect, we consider a regression 
model like this: 

Yi = a + b1X1i + b2X2i + b3X1iX2i+ ei 

Font size: X1 = 1 for large, X1 = 0 for small 
Background color: X2 = 1 for white, X2 = 0 for blue 
a: value in baseline condition (blue + small) 
b1: difference between small and large (for blue only) 
b2: difference between blue and white (for small only) 
b3: extra difference between small and large for white, or 
extra difference between blue and white for large



Explanation

Let’s say a = 30, b1 = 10, b2 = 20, b3 = 15 
Yi = 30 + 10*X1i + 20*X2i + 15*X1iX2i+ ei 

Small, blue: readability = 30+10*0+20*0+15*0*0 = 30 
Large, blue: readability = 30+10*1+20*0+15*1*0 = 40 
Small, white: readability = 30+10*0+20*1+15*0*1 = 50 
Large, white: readability = 30+10*1+20*1+15*1*1 = 75
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Explanation

Let’s say a = 30, b1 = 10, b2 = 20, b3 = 15 
Yi = 30 + 10*X1i + 20*X2i + 15*X1iX2i+ ei 

Small, blue: readability = 30+10*0+20*0+15*0*0 = 30 
Large, blue: readability = 30+10*1+20*0+15*1*0 = 40 
Small, white: readability = 30+10*0+20*1+15*0*1 = 50 
Large, white: readability = 30+10*1+20*1+15*1*1 = 75
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Implications
Whether you have a significant interaction depends on the 
significance of b3 

b1 and b2 are uninterpretable without b3 

Before, b1 represented the effect of X1 

Now, there is no single “effect of X1”, because it depends 
on X2 (and vice versa) 

You can’t have b3 in the model without b1 and b2  
Since b3 is an additional effect, it relies on b1 and b2



Implications
Calculating differences between groups becomes trickier: 

- Diff. small and large text for blue background: b1 

- Diff. blue and white background for small text: b2 

- Diff. small and large text for white background: b1 + b3 

- Diff. blue and white background for large text: b2 + b3 

Some involve 2 b’s, so you can’t check their significance 
Luckily there are tests for that 
Or, you can re-code your dummies!



Explanation
Types of effects: 

Super-additive, e.g.: a = 30, b1 = 10, b2 = 20, b3 = 15 

Sub-additive, e.g. a = 30, b1 = 10, b2 = 20, b3 = –5 
Cross-over, e.g.: a = 30, b1 = 10, b2 = 20, b3 = –15 
Double cross-over, e.g.: a = 30, b1 = 10, b2 = 20, b3 = –30
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Explanation
Types of effects: 

Super-additive, e.g.: a = 30, b1 = 10, b2 = 20, b3 = 15 

Sub-additive, e.g. a = 30, b1 = 10, b2 = 20, b3 = –5 
Cross-over, e.g.: a = 30, b1 = 10, b2 = 20, b3 = –15 
Double cross-over, e.g.: a = 30, b1 = 10, b2 = 20, b3 = –30
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Orthogonal spec
We can also build this model orthogonally: 

Yi = a + b1X1i + b2X2i + b3X1iX2i+ ei 

Font size: X1 = 0.5 for large, X1 = –0.5 for small 
Background color: X2 = 0.5 for white, X2 = –0.5 for blue 
a: grand mean 
b1: average difference between small and large 
b2: average difference between blue and white 
b3: extra difference between small and large for white, or 
extra difference between blue and white for large



Orthogonal spec

Now, a = 48.75, b1 = 17.5, b2 = 27.5, b3 = 15 
Yi = 48.75 + 10*X1i + 20*X2i + 15*X1iX2i+ ei 

Small, blue: 48.75+17.5*–0.5+27.5*–0.5+15*–0.5*–0.5 = 30 
Large, blue: 48.75+17.5*0.5+27.5*–0.5+15*0.5*–0.5 = 40 
Small, white: 48.75+17.5*–0.5+27.5*0.5+15*–0.5*0.5 = 50 
Large, white: 48.75+17.5*0.5+27.5*0.5+15*0.5*0.5 = 75
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Sum of Squares

SSt

SSm SSr

SSa SSb
Variance 
explained 

by A

SSab
Variance 
explained 

by B

Variance 
explained by 

the 
interaction 
between A 

and B



Sum of Squares
Formulas for A (r groups) and B (s groups): 

SSt: same as for regular ANOVA: 
SSt = s2(N–1) 

SSr: also the same, k is all r*s combinations of A and B: 

∑sk2(Nk–1), with n–k df 

SSm: also the same; sum of squares over r*s group means: 

∑nk(meank – grand mean)2, with k–1 df



Sum of Squares

SSa: sum of squares over r group means: 

∑nr(meanr – grand mean)2, with r–1 df 

SSb: sum of squares over s group means: 

∑ns(means – grand mean)2, with s–1 df 

SSab: what is left over: 
SSm–SSa–SSb, with (r–1)(s–1) df



Mean Squares and F
Mean squares: 

MSa = SSa/dfa 
MSb = SSb/dfb 
MSab = SSab/dfab     
MSr = SSr/dfr 

F ratios: 
Fa = MSa/MSr (with dfa, dfr degrees of freedom) 
Fb = MSb/MSr (with dfb, dfr degrees of freedom) 
Fab = MSab/MSr (with dfab, dfr degrees of freedom)



Lessons learned

A factorial ANOVA is a regular ANOVA, but with the SSm 
divided into each factor and their interaction(s) 

2 variables: SSm = SSa + SSb + SSab 
3 variables: SSm = SSa + SSb + SSc + SSab + SSac + SSbc 
+ SSabc



Lessons learned

A factorial ANOVA is a regression model with interaction 
term(s) 

e.g. 2x2: X1 represents A, X2 represents B: 
Yi = a + b1X1i + b2X2i + b3X1iX2i+ ei 

e.g. 3x2: X1 and X2 represent A, X3 represents B: 
Yi = a + b1X1i + b2X2i + b3X3i + b4X1iX3i + b5X2iX3i + ei



Lessons learned

e.g. 3x3: X1 and X2 represent A, X3 and X4 represent B: 
Yi = a + b1X1i + b2X2i + b3X3i + b4X4i + b5X1iX3i + b6X2iX3i + 
b7X1iX4i + b8X2iX4i + ei 

e.g. 2x2x2: X1 represents A, X2 represents B, X3 represents C: 
Yi = a + b1X1i + b2X2i + b3X3i + b4X1iX2i + b5X1iX3i + b6X2iX3i 
+ b7X1iX2iX3i + ei



Factorial ANOVA in R
because too many X1iX2iX3iX4iX5iX6i…



Factorial in R

Dataset “goggles.csv” 
Effect of beer consumption on mate attractiveness 

Variables: 
gender: gender of the participant 
alcohol: amount of alcohol consumed 
attractiveness: attractiveness of the person they want to 
go home with at the end of the night (%)



Plotting
Relevel the alcohol variable to make “None” the baseline: 

goggles$alcohol <- relevel(goggles$alcohol, ref=“None”) 

Line plot with bootstrapped CIs: 
ggplot(goggles, aes(alcohol, attractiveness, color = 
gender)) + stat_summary(fun.y = mean, geom = “line”, 
aes(group = gender)) + stat_summary(fun.y = mean, geom 
= “point”, aes(group = gender), size = 3) + 
stat_summary(fun.data = mean_cl_boot, geom = 
“errorbar”, width = 0.2) + ylim(0, 100)



Plotting

Box plots per group: 
ggplot(goggles,aes(alcohol,attractiveness))
+geom_boxplot()+facet_wrap(~gender)



Normality
Stat.desc(): 

stat.desc(goggles$attractiveness, desc=F, norm=T) 

By gender (2 groups): 
by(goggles$attractiveness, goggles$gender, stat.desc, 
desc=F, norm=T) 

By alcohol (3 groups): 
by(goggles$attractiveness, goggles$alcohol, stat.desc, 
desc=F, norm=T)



Normality

For each of the 6 groups: 
by(goggles$attractiveness, list(goggles$alcohol,  
goggles$gender), stat.desc, desc=F, norm=T) 

Verdict: 
Overall some skewness, and failed normal test 
Failed normal test for females 
No problems in all 6 groups



Homoscedasticity
By gender (2 groups): 

leveneTest(attractiveness~gender, data=goggles) 

By alcohol (3 groups): 
leveneTest(attractiveness~alcohol, data=goggles) 

For each of the 6 groups: 
leveneTest(attractiveness~alcohol*gender, data=goggles) 

Verdict: 
Heteroscedasticity by gender, but not for the interaction



Contrasts

Alcohol has 3 levels, so we should define 2 contrasts: 
contrasts(goggles$alcohol)<-cbind(c(-2/3, 1/3, 1/3),  
c(0, -1/2, 1/2) 

Gender has 2 levels, so only one contrast is needed: 
contrasts(goggles$gender)<-c(-1/2, 1/2) 
(Why bother with contrasts here? — We’ll get to that in a 
minute!)



Run the ANOVA
To run with both main effects of A and B, and the interaction 
effect AB, you can simply specify A*B  

R automatically includes the main effects 

Run the model: 
g1 <- aov(attractiveness ~ alcohol*gender, data = goggles) 
Anova(g1, type=3) 

               Sum Sq Df   F value    Pr(>F)     
(Intercept)    163333  1 1967.0251 < 2.2e-16 *** 
gender            169  1    2.0323    0.1614     
alcohol          3332  2   20.0654 7.649e-07 *** 
gender:alcohol   1978  2   11.9113 7.987e-05 *** 
Residuals        3487 42                       



Run the ANOVA

Get the plots to test for homoscedasticity and normality: 
plot(g1)



Why type=3?

You can run a factorial ANOVA in three ways, with three 
types of Sum of Squares:



Type I
In Type I Sum of Squares variables are added to the model 
one by one (this is what AOV does) 

Let’s say you test Y~A*B 
The first F-test is the effect of A alone 
The second F-test is the effect of B, given A 
The third F-test is the effect of AB, given A and B 

The order in which you list your variables makes a difference! 
If you specify Y ~ B*A, you get different results!



Type II
In Type II Sum of Squares, main effects are added first, 
interaction(s) later (this is what Anova does by default) 

Let’s say you test Y~A*B 
The first F-test is the effect of A, given B 
The second F-test is the effect of B, given A 
The third F-test is the effect of AB, given A and B 

The main effects are meaningless when there is an 
interaction effect (but accurate if not)



Type III
In Type III Sum of Squares everything is added to the model 
at the same time 

Let’s say you test Y~A*B 
The first F-test is the effect of A, given B and AB 
The second F-test is the effect of B, given A and AB 
The third F-test is the effect of AB, given A and B 

The main effects are meaningful, but not very useful 
Because the effect of B now depends on A and vice versa



Type I, II or III?
Tips: 

- Don’t use type I 

- Use type II if you expect no interaction effects at all 
(slightly more powerful) or if you want to use non-
orthogonal contrasts 

- Type II doesn’t work when group sizes are very unequal 

- Use type III if you do expect an interaction effect, or when 
group sizes are unequal 

- For type III to make sense, contrasts must be orthogonal



Interpretation
               Sum Sq Df   F value    Pr(>F)     
(Intercept)    163333  1 1967.0251 < 2.2e-16 *** 
gender            169  1    2.0323    0.1614     
alcohol          3332  2   20.0654 7.649e-07 *** 
gender:alcohol   1978  2   11.9113 7.987e-05 *** 
Residuals        3487 42                        

There is no significant main effect of gender (plot it!) 

There is a significant main effect of alcohol (plot it!) 

There is a significant interaction effect (see our first plot!) 
The effect of alcohol differs per gender, and vice versa 
The other two effects are therefore uninterpretable!



Interpret contrasts
Run summary.lm(g1): 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)        58.333      1.315  44.351  < 2e-16 *** 
gender1            -3.750      2.631  -1.426 0.161382     
alcohol1           -8.125      2.790  -2.912 0.005727 **  
alcohol2          -18.125      3.222  -5.626 1.37e-06 *** 
gender1:alcohol1  -15.000      5.580  -2.688 0.010258 *   
gender1:alcohol2  -26.250      6.443  -4.074 0.000201 *** 

Gender1: the contrast of gender 
Since we coded the model orthogonal, this is the overall 
difference between males and females (which differs per 
alcohol level, and is therefore not very interesting)



Interpret contrasts
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)        58.333      1.315  44.351  < 2e-16 *** 
gender1            -3.750      2.631  -1.426 0.161382     
alcohol1           -8.125      2.790  -2.912 0.005727 **  
alcohol2          -18.125      3.222  -5.626 1.37e-06 *** 
gender1:alcohol1  -15.000      5.580  -2.688 0.010258 *   
gender1:alcohol2  -26.250      6.443  -4.074 0.000201 *** 

alcohol1: comparing no alcohol to the two alcohol groups 
Again, there is an overall difference, but not interesting 
because it differs for males and females 

alcohol2: comparing 2 versus 4 pints of beer 
Same thing



Interpret contrasts
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)        58.333      1.315  44.351  < 2e-16 *** 
gender1            -3.750      2.631  -1.426 0.161382     
alcohol1           -8.125      2.790  -2.912 0.005727 **  
alcohol2          -18.125      3.222  -5.626 1.37e-06 *** 
gender1:alcohol1  -15.000      5.580  -2.688 0.010258 *   
gender1:alcohol2  -26.250      6.443  -4.074 0.000201 *** 

gender1:alcohol1: tests whether the effect of no alcohol vs. 
the two alcohol groups differs for males and females 

gender1:alcohol2: tests whether the effect of 2 vs. 4 pints 
differs for males and females 

The answer is yes for both!



Interpret contrasts
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)        58.333      1.315  44.351  < 2e-16 *** 
gender1            -3.750      2.631  -1.426 0.161382     
alcohol1           -8.125      2.790  -2.912 0.005727 **  
alcohol2          -18.125      3.222  -5.626 1.37e-06 *** 
gender1:alcohol1  -15.000      5.580  -2.688 0.010258 *   
gender1:alcohol2  -26.250      6.443  -4.074 0.000201 *** 

Effect for females, no alcohol: 58.333 + -1/2*-3.75 + 
-2/3*-8.125 + -1/2*-2/3*-15 = 60.625 
Effect for females, 2 pints: 58.333 + -1/2*-3.75 + 1/3*-8.125 + 
-1/2*-18.125 + -1/2*1/3*-15 + -1/2*-1/2*-26.25 = 62.5 
Effect for females, 4 pints: 58.333 + -1/2*-3.75 + 1/3*-8.125 + 
1/2*-18.125 + -1/2*1/3*-15 + -1/2*1/2*-26.25 = 57.5



Interpret contrasts
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)        58.333      1.315  44.351  < 2e-16 *** 
gender1            -3.750      2.631  -1.426 0.161382     
alcohol1           -8.125      2.790  -2.912 0.005727 **  
alcohol2          -18.125      3.222  -5.626 1.37e-06 *** 
gender1:alcohol1  -15.000      5.580  -2.688 0.010258 *   
gender1:alcohol2  -26.250      6.443  -4.074 0.000201 *** 

Effect for males, no alcohol: 58.333 + 1/2*-3.75 + -2/3*-8.125 
+ 1/2*-2/3*-15 = 66.875 
Effect for males, 2 pints: 58.333 + 1/2*-3.75 + 1/3*-8.125 + 
-1/2*-18.125 + 1/2*1/3*-15 + 1/2*-1/2*-26.25 = 66.875 
Effect for males, 4 pints: 58.333 + 1/2*-3.75 + 1/3*-8.125 + 
1/2*-18.125 + 1/2*1/3*-15 + 1/2*1/2*-26.25 = 35.625



Interpret contrasts
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Simple e!ects

Test the effect of one variable for different levels of the other 
variable 

E.g., a kind of t-test for gender at each level of alcohol 
Or, a kind of ANOVA for alcohol separately for males and 
females



Simple e!ects
SSm

2+4 pints (M+F) 0p (M+F)

2p (M+F) 4p (M+F)
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Simple e!ects
First, create a variable with all groups: 

goggles$simple <- interaction(goggles$alcohol, 
goggles$gender) 

Create dummies for the contrasts: 
alcohol1 <- c(-2/3,1/3,1/3,-2/3,1/3,1/3) 
alcohol2 <- c(0, -1/2, 1/2, 0, -1/2, 1/2) 
gender_none <- c(-1/2, 0, 0, 1/2, 0, 0) 
gender_2p <- c(0, -1/2, 0, 0, 1/2, 0) 
gender_4p <- c(0, 0, -1/2, 0, 0, 1/2)



Simple e!ects

Load the contrasts: 
contasts(goggles$simple) <- cbind(alcohol1, alcohol2, 
gender_none, gender_2p, gender_4p) 

Run the ANOVA and get the lm summary: 
simpleg <- aov(attractiveness ~ simple, data = goggles) 
summary.lm(simpleg)



Simple e!ects
                  Estimate Std. Error t value Pr(>|t|)     
(Intercept)         58.333      1.315  44.351  < 2e-16 *** 
simplealcohol1      -8.125      2.790  -2.912  0.00573 **  
simplealcohol2     -18.125      3.222  -5.626 1.37e-06 *** 
simplegender_none    6.250      4.556   1.372  0.17742     
simplegender_2p      4.375      4.556   0.960  0.34243     
simplegender_4p    -21.875      4.556  -4.801 2.02e-05 *** 

The first part we already knew from earlier. For the rest: 
Simplegender_none: the effect of gender with no alcohol 
Simplegender_2p: the effect of gender with 2 pints 
Simplegender_4p: the effect of gender with 4 pints 

Only the last simple effect is significant!



Simple e!ects
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Post-hoc tests?

Same as for regular ANOVA! 
You can only do post-hoc tests on main effects! 

If you want to do post-hoc tests on your simple effects (e.g. 
on alcohol for different genders): 

Use non-orthogonal contrasts, and apply the appropriate 
correction (see slides on Bonferroni, Holm, and Benjamini-
Hochberg corrections)



Robust methods
Use the WRS2 package! 

Two-way ANOVA on 10% trimmed means: 
t2way(attractiveness~alcohol*gender, data=goggles, tr=0.1) 

Two way ANOVA with M-measures and a bootstrap: 
pbad2way(attractiveness~alcohol*gender, data=goggles, 
est=“median”, nboot = 2000) 
use est=“mom” to use an automatically trimmed mean 
rather than the median



Robust rest
Robust contrasts? See regular ANOVA! 

You can run robust t-tests on the contrast dummies 

Robust post-hoc tests? Same as for regular ANOVA! 
You can only do post-hoc tests on main effects! 

If you want to do robust post-hoc tests on your simple 
effects (e.g. on alcohol for different genders): 

Use non-orthogonal contrasts, and apply the appropriate 
correction, run robust t-tests on the contrast dummies



E!ect sizes

Overall R2: from summary.lm 

Omega-squared per effect: use my “omega_aov” function 
on the next slide



E!ect sizes

omega_aov <- function(model){ 
 MS<-summary(model)[[1]]$'Mean Sq'; #get the mean squares 
 df<-summary(model)[[1]]$Df; #get the Dfs 
 MSr<-MS[length(MS)]; #get MSr (the last one) 
 N<-sum(df)+1; #get N (sum of df+1) 
 MS<-MS[-c(length(MS))]; #remove MSr from MS 
 df<-df[-c(length(df))]; #remove dfr from df 
 var<-df*(MS-MSr)/N; #get the variances 
 varTotal<-sum(var)+MSr; #get the total variance 
 omega.squared<-var/varTotal; #get the omega-squareds 
 omega<-sqrt(omega.squared); #get the omegas 
 labels<-attr(model$terms,"term.labels"); #get labels 
 return(cbind(labels,omega,omega.squared)) 
}



E!ect sizes
Cohen’s d of specific comparisons (e.g. the simple effects): 
same as ANOVA 

Get means, sds, and ns from stat.desc: 
desc <- by(goggles$attractiveness, list(goggles$gender, 
goggles$alcohol), stat.desc) 

Plug values into mes, e.g.: 
mes(desc[[“Male”, “None”]][“mean”], desc[[“Female”, 
“None”]][“mean”], desc[[“Male”, “None”]][“std.dev”], 
desc[[“Female”, “None”]][“std.dev”], 8, 8)



Reporting

See Field section 12.9 

Since effects may be complicated, always report a graph



“It is the mark of a truly intelligent person  
to be moved by statistics.” 

George Bernard Shaw 
 


